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Abstract 
• A PC-based intelligent power control system of the three-phase grid-connected 

photovoltaic (PV) system for active and reactive power control during grid 
faults is developed. 

• Considering low voltage ride through (LVRT) requirements and current limit of 
three-phase inverter. 

• Two fuzzy-neural-network (FNN) based intelligent controllers are proposed. 
– Probabilistic wavelet fuzzy neural network (PWFNN) controller 
– Takagi-Sugeno-Kang type probabilistic fuzzy neural network with asymmetric membership function 

(TSKPFNN-AMF) controller 

• A dual mode operation control method of the converter and inverter of the 
three-phase grid-connected PV system is proposed. 

• Various types of voltage sags and test scenarios are designed to investigate the 
LVRT capability of the grid-connected PV system. 

• The control performances of the proposed controllers are superior to other 
controllers. 

– Higher complexity of structure and current harmonic distortion of injected current during grid faults 
are the main defects. 
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Background 
• The price of the photovoltaic (PV) system declines of around 75% in less than 10 years. 

• The cumulative installed capacity of the world has been reached to 178 GW in the end of 2014. 

• EPIA predicts the worldwide total installed capacity of the PV system in 2019 could reach between 
396 and 540 GW with the highest probability scenario being around 450 GW. 
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• Taiwan has decided to raise 
the official PV installation 
target from 13 GW to 20 
GW in 2025 (currently, 728 
MW). 

Fig. 1.1 
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Background 
• A grid-connected PV system is mainly composed of two parts:  (1) PV panel, (2) 

inverter.  
• Optional elements: 

– Transformer (In Spain, the transformer is mandatory for galvanic isolation requirement). 
– DC-DC boost converter. 

• Single-stage or two-stage 
– Single-stage: mainly used for medium or high power applications 

• Pros:  simple-structure, reliable and efficient energy conversion. 
• Cons: higher dc-link voltage , efficiency worsened by the less accurate MPPT, partial shading issue. 

– Two-stage: mainly adopted in residential PV applications 
• Pros: place with partial shading, complicated roof structures, small space, various roof orientations. 
• Cons: efficiency may be lowered by the DC-DC stage, compensated by the accuracy MPPT, cost. 
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(1.5) 

Electrical Characteristic of PV Cell 

• The short circuit current of the PV 
panel highly depends on the 
irradiance.  

• High irradiance leads to large short 
circuit current.  

• High temperature leads to small 
open circuit voltage. 
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Three-Phase Grid-Connected PV System 
• PV panel is emulated by Chroma 62100H- 600S (153 VDC, 1 kW);  Utility grid is emulated by 

KIKUSUI PCR2000LE AC power (3×2kVA) 

• Y-connected 100Ω/phase resistive load, 1 kVA three-phase inverter, 3 kVA Y- step-up 
transformer. 

• 16-bit A/D converter (PCI-1716), 12-bit D/A converter (MRC-6810) 
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Fig. 2.1 
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Three-Phase Grid-Connected PV System 
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Table 2.1 Parameters of experimental setup. 

input voltage /frequency (AC) 170~250 Vrms /47~63 Hz

output capacity single-phase 2 kVA

voltage output L range:1 to 150 Vrms
output H range:2 to 300 Vrms

voltage resolution 0.1 Vrms

maximum output current output L range (100 Vrms):20 A
output H range (200 Vrms):10 A

maximum reverse current 30% of maximum current

frequency 1Hz~999Hz

frequency resolution 0.01Hz(1.00 Hz to 100.00 Hz)
0.1Hz(100.0 Hz to 999.9 Hz)

Table 2.2 Specifications of KIKUSUI PCR2000LE. 

dc-link voltage 200 V
dc-link capacitor 3360 μF
grid connection inductor L 10 mH
inverter output voltage 110 Vrms line-to-line, 60 Hz
inverter maximum current 5 Arms (7.1 A peak current)
emulated PV panel Voc: 185.6 V, Isc: 6.6 A, 1 kW
switching frequency 18 kHz, 10 kHzIswCsw ff __ ,

dcV

dcC

cabcab vvv ,,

maxI
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Three-Phase Grid-Connected PV System 
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Fig. 2.5 
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PC-Based Control System 
• MPPT control 

– voltage-based perturb-and-observe scheme (output: voltage command       ).  

• Power calculation and phase-locked loop (PLL) block 

– SRF-PLL. 

• Grid fault control 

• Control outputs of the PC-based control system: the boost converter PWM control 
signal          and the three-phase inverter reference currents             . 

• The SIMULINK control package is adopted for the implementation of the proposed 
algorithms. 

• The proposed intelligent controllers are all realized using the “C” language. 
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Requirements of LVRT 
• PV systems are largely and widely penetrated into the utility grid in recent year. 

– PV systems may stop the operation or be in unstable operation simultaneously due to transient 
disturbances. 

– These matters may seriously impact on the stability of the grid, such as power outage, voltage 
flicker. 

• The next-generation PV systems have to provide a full range of services as what the 
traditional power plants do. 

– Low voltage ride through (LVRT) capability under grid faults. 

– Keeping connected during grid faults. 

– Support the grid by supplying reactive power during grid fault. 

• E.ON requires the PV system to support voltage with additional reactive current during 
voltage sag. 

– The voltage control must take place within 20 ms (one cycle in Europe) after fault occurrence. 

– The amount of the additional reactive current is 2% of the rated current for each percent of the 
voltage sag. 
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Requirements of LVRT 
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Power Formulations 
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Accordingly, P and Q can be regulated by controlling qi  and di . 
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Reactive and Active Power Control 
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Grid Synchronization 
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The negative sequence component voltage of vd can be filtered by using a properly designed 
PI low pass filter.  
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Fig. 3.2 

Dual Mode Control Strategy 
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(a) (b) 

Dual Mode Control Strategy 
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Fig. 3.3 
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Voltage Sags Classification 
• The IEEE standard 1159-1995 has defined that voltage sag is a decrease in rms voltage 

down to 90% to 10% of nominal voltage for a time greater than 0.5 cycles of the power 
frequency but less than or equal to one minute. 

•  “voltage sag” (in U.S.A. English) and “voltage dip” (in U.K. English) differ in meaning. 
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Fig. 3.4 
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Voltage Sags Classification 
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Fig. 3.5 

a

b

c

Type B

a

b

c

Type C

a

b

c

Type D

a

b

c

Type E

a

b

c

Type F

a

b

c

Type G

• Three-phase faults are symmetrical and called type A, which is not depicted in Fig. 3.5. 
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Voltage Sags Classification 
• When a fault occurs at bus 3 in Fig. 3.6, a voltage sag appears at bus 1 and propagates to 

bus 2 (which appears at the terminals of VSI) through the transformer (TR). 
• Transformers always eliminate zero-sequence voltage and result in changing the type of 

voltage sag. 
– Type 1: does not change anything to voltage (e.g. Y grounded/Y grounded) 

– Type 2, which eliminates the zero-sequence voltage (e.g. ∆/Z) 

– Type 3, which swaps line and phase voltage (e.g. ∆/Y, Y/∆, Y/Z) 
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Network Structure of PWFNN Controller 
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Fig. 4.1 

Membership 
Layer

(Layer 2)

Output Layer
(Layer 6)

Probabilistic 
Layer

(Layer 3)

Wavelet Layer
(Layer 4)

Rule Layer
(Layer 5)

Input Layer
(Layer 1)



Department of Electrical Engineering, National Central University, Taiwan 

Network Structure of PWFNN Controller 
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Fig. 4.2 
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Network Structure of PWFNN Controller 
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Network Structure of PWFNN Controller 
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Online Learning Algorithm of PWFNN Controller 

• Four adjustable parameters                          need to be tuned. 
• The purpose of the BP algorithm is to minimize the energy function E 
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Online Learning Algorithm of PWFNN Controller 
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Online Learning Algorithm of PWFNN Controller 

30 

Owing to the uncertainties of the grid-connected three-phase PV system, the exact 
calculation of the sensitivity of the system                   cannot be determined exactly. 
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Fig. 4.4 

Online Learning Algorithm of PWFNN Controller 
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Convergence of PWFNN controller 

32 

The resulted varied learning rates are shown in the following equations: 
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Convergence of PWFNN controller 

33 
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Fig. 4.5 
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Fig. 4.6 
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The varied learning rates based on the analysis of a discrete-type Lyapunov function have 
been derived as follows: 
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The change in the Lyapunov function can be written as 
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If the learning rates of the TSKPFNN-AMF controller are designed as (4.59) to (4.63), 
then (4.65) can be rewritten as 
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Therefore, the proof of the convergence of TSKPFNN-AMF controller is completed. 
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Fig. 5.1 
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The average tracking error Terravg , the maximum tracking error TMAX and the standard 
deviation of the tracking error Tσ for the reference tracking are defined as follows: 
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Reactive Power Supporting with Boost Converter Operated at Mode I 

Case 1): single phase-to-ground 
fault occurs with 0.5 pu voltage dip 
•  Ppv= 600 W and P = 526 W 
•  Q rises to 380 VAR 
•  voltages: 1.0 pu, 0.77 pu and 0.77 pu 
• Vpv and  Ipv remain unchanged due to 

normal operating of the MPPT control 
at Mode I. 

• Vmpp = 150.7 V, irradiance = 600 W/m2 
• Vpv = 150.9 V, Ipv=4.03 A 
• PI controllers: 

settling time of Q= 0.3 s, 
overshoot of Vdc = 2.6 % 

• PWFNN controllers: 
settling time of Q= 0.1 s, 

overshoot of Vdc = 1.14 % 
(a) PI (b) PWFNN 
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Reactive Power Supporting with Boost Converter Operated at Mode II 

Case 2): single phase-to-ground 
fault occurs with 0.5 pu voltage dip 
•  Ppv= 1000 W → 836 W 
• P = 865 W → 720 W 
•  Q rises to 380 VAR 
•  voltages: 1.0 pu, 0.77 pu and 0.77 pu 
• Vpv = 153 V → 164 V 
• Ipv = 6.5 A → 5.1 A, at Mode II. 
• PI controllers: 

settling time of Q= 0.3 s, 
overshoot of Vdc = 2.5 % 

• PWFNN controllers: 
settling time of Q= 0.1 s, 

overshoot of Vdc = 1.1 % 

(a) PI (b) PWFNN 
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Reactive Power Supporting with Boost Converter Operated at Mode II 

Case 3): double phase-to-phase 
fault occurs with 0.5 pu voltage dip 
•  Ppv= 1000 W → 112 W 
• P = 860 W → 55 W 
•  Q rises to 720 VAR 
•  voltages: 0.5 pu, 0.92 pu and 0.92 pu 
• Vpv = 153 V → 174 V 
• Ipv = 6.5 A → 0.62 A, at Mode II. 
• PI controllers: 

settling time of Q= 0.5 s, 
overshoot of Vdc = 4.63 % 

• PWFNN controllers: 
settling time of Q= 0.2 s, 

overshoot of Vdc = 6.71 % 

(a) PI (b) PWFNN Fig. 5.4 
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Cases 1 to 3 Using FNN Controllers (1/2) 

(a) Case 1 (b) Case 2 Fig. 5.5 
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Cases 1 to 3 Using FNN Controllers (2/2) 

Case 1): 
•  Ppv= 600 W and P = 530 W 
•  Q rises to 378 VAR 
•  voltages: 1.0 pu, 0.76 pu and 

0.76 pu 
• Vpv and  Ipv unchanged (Mode I). 
• Vmpp = 150.5 V, irradiance = 600 

W/m2 
• Vpv = 150.0 V, Ipv=3.99 A 

• PI controllers: 
settling time of Q= 0.3 s 
overshoot of Vdc = 2.6 % 

• FNN controllers: 
settling time of Q= 0.12 s 
overshoot of Vdc = 1.2 % 

• PWFNN controllers: 
settling time of Q= 0.1 s 
overshoot of Vdc = 1.14 % 

Case 2): 
•  Ppv= 1000 W → 820 W 
• P = 896 W → 720 W 
•  Q rises to 377 VAR 
•  voltages: 1.0 pu, 0.76 pu and 

0.76 pu 
• Vpv = 151.2 V → 164 V 
• Ipv = 6.6 A → 5.0 A, at Mode II. 
• PI controllers: 

settling time of Q= 0.3 s  
overshoot of Vdc = 2.5 % 

• FNN controllers: 
settling time of Q= 0.15 s  
overshoot of Vdc = 3.3 % 

• PWFNN controllers: 
settling time of Q= 0.1 s  
overshoot of Vdc = 1.1 % 

Case 3):  
•  Ppv= 1000 W → 88 W 
• P = 886 W → 15 W 
•  Q rises to 655 VAR 
•  voltages: 0.5 pu, 0.91 pu and 0.9 

pu 
• Vpv = 151.4 V → 174 V 
• Ipv = 6.6 A → 0.44 A, at Mode II. 
• PI controllers: 

settling time of Q= 0.5 s  
overshoot of Vdc = 4.63 % 

• FNN controllers: 
settling time of Q= 0.25 s 
overshoot of Vdc = 7.5 % 

• PWFNN controllers: 
settling time of Q= 0.2 s 
overshoot of Vdc = 6.71 % 
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Performance Discussion 
• The performance measurements of 

PWFNN controller are superior to the other 
controllers (PI, FNN). 

• When the FNN and PWFNN controllers 
are implemented, the overshoot of Vdc is 
larger owing to more energy accumulated 
in Cdc during the transient period.  

• computation complexity 
 PWFNN: 753 computation steps. 
PI: 3 computation steps. 

• implementation complexity 
PWFNN: 427 code lines/ 14k bytes.  
PI: only three function blocks by 

using Simulink. 

Fig. 5.6 
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Decreasing of Irradiance with Boost Converter Operated at Mode I 
Case 4): single phase-to-ground 
fault occurs with 0.5 pu voltage dip 
• t = 0.2 s: voltage sag occurrence 
• Ppv = 603 W, P = 533 W (unchanged) 
• Q rises to 383 VAR 
•  voltages: 1.0 pu, 0.77 pu and 0.77 pu 
• Vpv = 150.3 V, Ipv = 4.1 A, at Mode I 
• t = 1.0 s; irradiance 600 → 300 W/m2 
• Ppv= 603 W → 305 W 
• P = 533 W → 243 W 
• Q  = 383 VAR (unchanged) 
• Vpv = 151.6 V, Ipv = 2.1 A, at Mode I 
• The irradiance change after grid fault 

may cause the response of P 
oscillating for both the PI or PWFNN 
controllers with stable response of Q. 

(a) PI (b) PWFNN 

Fig. 5.7 
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Decreasing of Irradiance with Boost Converter Operated at Mode I 

Case 5): single phase-to-ground 
fault occurs with 0.5 pu voltage dip 
• irradiance = 30 W/m2 
• t = 0.2 s: voltage sag occurrence 
• Ppv = 30 W, P = 0 W  
• Q rises to 391 VAR 
•  voltages: 1.0 pu, 0.77 pu and 0.77 pu 
• Vpv = 158.9 V, Ipv = 0.23 A, at Mode I 
• If the output power of PV panel is less 

than 30 W, the generated power can’t 
support the electronic circuits to 
operate and the boost converter and 
three-phase inverter will shut down. 

(a) PI (b) PWFNN Fig. 5.8 
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Reactive Power Supporting at 
Mode I 
Case 1): double phase-to-ground fault 
occurs with 0.3 pu voltage dip 
•  Ppv= 612 W and P = 524 W 
•  Q rises to 456 VAR 
•  voltages: 0.7 pu, 0.87 pu and 0.87 pu 
• Vpv = 150.9 V, Ipv=4.05 A, at mode I 
• iq

* changes from 4.1 A to 4.9 A; id
* rises to 2.9 A 

• PI controllers: 
settling time of Q= 0.45 s, overshoot of 

Vdc = 4.9 % 
• TSKPFNN-AMF controllers: 

settling time of Q= 0.3 s, overshoot of Vdc 
= 1.45 % 

• The settling time of Q is decreased by 33.3 % 
and the overshoot of  Vdc is decreased by 70.4 % 
by using the TSKPFNN-AMF controllers. (a) PI (b) TSKPFNN-AMF Fig. 5.10 
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Reactive Power Supporting at 
Mode II 
Case 2): double phase-to-ground fault 
occurs with 0.7 pu voltage dip 
•  Ppv= 1005 W → 102 W; P = 882 W → 21 W 
•  Q rises to 527 VAR, , at mode II 
•  voltages: 0.3 pu, 0.67 pu and 0.68 pu 
• Vpv = 150.4 → 173.9 V, Ipv= 6.6 → 0.52 A 
• iq

* drops from 6.2 A to 1.3 A; id
* rises to 5.9 A 

• PI controllers: 
settling time of Q= 0.7 s, overshoot of Vdc 

= 5.4 % 
• TSKPFNN-AMF controllers: 

settling time of Q= 0.16 s 
 overshoot of Vdc = 7 % (by PI1) 

• The settling time of Q is decreased by 77.1 % 
by using the TSKPFNN-AMF controllers. 

(a) PI (b) TSKPFNN-AMF Fig. 5.11 
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Reactive Power Supporting at 
Low Irradiance 
Case 3): double phase-to-ground fault 
occurs with 0.7 pu voltage dip 
• Irradiance: 100 W/m2  
• Ppv= 106 W → 77.6 W; P = 63.8 W → 1.4 W 
•  Q rises to 522 VAR, , at mode II 
•  voltages: 0.29 pu, 0.67 pu and 0.68 pu 
• Vpv = 158 → 168 V, Ipv= 0.67 → 0.46 A 
• iq

*  1.37 → 1.23 A; id
* rises to 5.9 A 

• PI controllers: 
settling time of Q= 0.65 s, overshoot of 

Vdc = 1.9 % 
• TSKPFNN-AMF controllers: 

settling time of Q= 0.2 s 
 overshoot of Vdc = 1.4 % (by PI1) 

• The settling time of Q is decreased by 77.1 % 
by using the TSKPFNN-AMF controllers. 

(a) PI (b) TSKPFNN-AMF Fig. 5.12 
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Reactive Power Supporting at 
Unsymmetrical Unbalance 
Fault Condition 
Case 4): double phase-to-ground fault 
unsymmetrical balance fault with 0.3 pu and 
0.5 pu voltage dip 
• Ppv= 609 W → 546 W; P = 532 W → 449 W 
•  Q rises to 556 VAR, , at mode II 
•  voltages: 0.61 pu, 0.77 pu and 0.86 pu 
• Vpv = 152 → 162 V, Ipv= 4.0 → 3.3 A 
• iq

*  4.1 → 4.9 A; id
* rises to 4.1 A 

• PI controllers: 
settling time of Q= 0.45 s, overshoot of 

Vdc = 4.1 % 
• TSKPFNN-AMF controllers: 

settling time of Q= 0.3 s 
 overshoot of Vdc = 0.6 % (by PI1) (a) PI (b) TSKPFNN-AMF Fig. 5.13 
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Cases 1 and 2 Using FNN Controllers (1/2) 

(a) Case 1 (b) Case 2 Fig. 5.14 
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Cases 1 and 2 Using FNN Controllers (2/2) 

Case 1): 
•  Ppv= 608 W and P = 520 W 
•  Q rises to 457 VAR 
•  voltages: 0.7 pu, 0.87 pu and 0.87 pu 
• Vpv = 150.6 V, Ipv=4.03 A, at mode I 
• PI controllers: 

settling time of Q= 0.45 s 
overshoot of Vdc = 4.9 % 

• FNN controllers: 
settling time of Q= 0.42 s 
overshoot of Vdc = 4.5 % 

• TSKPFNN-AMF controllers: 
settling time of Q= 0.3 s 
overshoot of Vdc = 1.45 %. 

Case 2): 
•  Ppv= 1008 W → 96 W; P = 887 W → 13 W 
•  Q rises to 504 VAR, , at mode II 
•  voltages: 0.3 pu, 0.67 pu and 0.67 pu 
• Vpv = 151.4 → 174 V, Ipv= 6.6 → 0.0.46 A 
• PI controllers: 

settling time of Q= 0.7 s 
overshoot of Vdc = 5.4 % 

• FNN controllers: 
settling time of Q= 0.55 s 
 overshoot of Vdc = 5.7 % (by PI1) 

• TSKPFNN-AMF controllers: 
settling time of Q= 0.16 s 
 overshoot of Vdc = 7 % (by PI1) 
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Table 5.1 THDs of Three-Phase Currents for Case 1 to Case 4 

Test Case Controller ia (%) ib (%) ic (%) Average (%)

Case 1 PI 8.73 8.72 7.16 8.20
TSKPFNN-AMF 8.23 7.23 8.82 8.09

Case 2 PI 15.98 14.24 18.26 16.16
TSKPFNN-AMF 16.90 16.55 21.45 18.30

Case 3 PI 17.59 16.62 21.87 18.69
TSKPFNN-AMF 20.65 18.86 26.22 21.91

Case 4 PI 9.20 10.79 11.58 10.52
TSKPFNN-AMF 19.99 25.74 34.20 26.64

• In Case 4, the THDs of ia, ib, and ic are 9.2 %, 10.79 % and 11.58 % when the PI controllers are 
used, and the THDs of ia, ib, and ic and  are 19.99 %, 25.74 %, and 34.2 % when the TSKPFNN-
AMF controllers are used.  
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• The performances of TSKPFNN-AMF controllers are superior to the other controllers. 
• Computation complexity: TSKPFNN-AMF controller: 662 steps; PI controller: 3 steps  
• Implementation complexity: TSKPFNN-AMF controller: 377 code lines/ 13k bytes; PI controller: 

3 blocks 
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• Voltages and currents analyses of PV system during the grid faults were described. 
• A dual mode operation control method is developed. 
• Network structure, online learning algorithms and convergence analysis. 
• Performances of the proposed controllers are better than PI, PID, FNN and WFNN 

controllers. 
• Major contributions 

• The formula for the depth of the unsymmetrical voltage sags is proposed and used to determine 
the injected reactive power during grid faults considering the current limit. 

• The dual mode control strategy is developed to maintain the balance of power between boost 
converter and three-phase inverter during grid faults 

• Two intelligent controllers are developed to control the active and reactive power of the grid-
connected three-phase PV system 

• The BP-based online learning algorithm of the PWFNN and TSKPFNN-AMF controllers with 
self-tuning learning rates. 

• The proposed controllers are successful implemented to control the power and DC-link bus 
voltage of a three-phase grid-connected PV system during grid faults. 

Conclusions 
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